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Introduction

This report summarizes the key findings of Year 3 of this project. The following Statement of
Work is excerpted from the original project, but has been modified to include the supplement on
JP-8 jet fuel. Dr. Miller has established a collaborative relationship with Dr. Jeff Fischer at the
University of Georgia that should benefit this project. Dr. Fischer studied pharmacokinetics of
JP8 and related compounds at Wright Patterson Airforce Base for 20 years before moving to
UGA. While we only proposed to do intraperitoneal injections for our Statement of Work, Dr.
Fischer has agreed to let us harvest brain tissue from animals exposed to JP8 vapor. We think
this will add significant value to our studies by allowing us to compare the i.p. exposure to the
more relevant inhalation exposure. Dr. Fischer has also suggested that we try some dermal
exposures and we are currently exploring this possibility.
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Statement of Work

Specific Aim 1. Effects of pyrethroids, acetylcholinesterase inhibitors, and JP-8 jet fuel on
dopamine uptake, DAT localization, and MPP* induced apoptosis in DAT expressing cells.
This aim will test the hypothesis that pyrethroids and acetylcholinesterase inhibitors increase
MPP*-induced apoptosis primarily through acting on dopamine uptake. The following
experiments will be performed under this aim:

Perform dopamine uptake tests on DAT expressing cells treated with deltamethrin,
permethrin, chlorpyrifos, pyridostigmine bromide, and MPP*. Years 1-2

Determine the effects of deltamethrin, permethrin, chlorpyrifos, pyridostigmine bromide, JP-
8, and MPP* on DAT localization in DAT expressing cells. Year 3-4

Perform caspase 3 assays on cells treated with deltamethrin, permethrin, chlorpyrifos, JP-8,
and pyridostigmine bromide to determine if they cause apoptosis or exacerbate MPP*-mediated
apoptosis. Year 1-2

Specific Aim 2. Examine the effects of pyrethroids, acetylcholinesterase inhibitors, JP-8,
and MPTP on mouse behavior and dopaminergic and cholinergic gene and protein
expression. This aim will test the hypothesis that the combination of pyrethroids and
acetylcholinesterase inhibitors decreases dopaminergic activity and increases cholinergic
activity, resulting in impaired locomotion in C57BL/6 mice. An important feature of this aim is
that we will examine behavior, gene expression, protein expression, and neurotransmitter levels

" in the same animals.

Aim 2A. Assess effects of pyrethroids, acetylcholinesterase inhibitors, and their
combination on mouse behavior. . In addition, JP-8 will also be tested. This aim will test the
hypothesis that these compounds decrease locomotion and increase anxiety and aggression.

Perform locomotor activity, open field ambulation, elevated plus maze, and social interaction

tests on C57BL mice six days after MPTP treatment. 3 days prior to or 3 days following MPTP
treatment, mice will be treated with 9 mg/kg of deltamethrin, chlorpyrifos, neostigmine, or the
combination of deltamethrin and chlorpyrifos. Year 1, 2 '
Aim 2B. Immunochemical and neurochemical analysis of dopaminergic and cholinergic
systems following pyrethroids, acetylcholinesterase inhibitors, JP-8, and MPTP. This aim
will assess the effects of pyrethroids, acetylcholinesterase inhibitors, and MPTP on cholinergic
and dopaminergic protein expression and function.

On the same mice in Aim 2A perform immunoblotting for DAT, D1, tyrosine hydroxylase,
M1 and M2 receptors, vesicular acetylcholine transporter, and choline acetyltransferase. Year 1.5
to 2.5

Perform HPLC analysis of monoamines on mice from Aim 2A. Year 2

On a separate subset of animals treated with deltamethrin, chlorpyrifos, neostigmine, and
MPTP, perform striatal dopamine and choline uptake. Year 3.

Aim 2C. Use custom cDNA microarrays to analyze regional changes in dopaminergic and
cholinergic gene expression following pyrethroids, acetylcholinesterase inhibitors, JP-8,
and MPTP. VIII) We will perform cDNA microarray analysis on midbrain, basal forebrain,
and striatum from ice treated with deltamethrin, chlorpyrifos, or MPTP. Years 2 and 3 will
contain most of the actual hybridizations. Year 4 will be focused bioinformatic analysis. Years
2,3,4




Scientific Progress

We have made significant progress in our Statement of Work. As reported in the progress
report from the previous year. We have finished the experiments in Specific Aim 1 with
the pyrethroids (deltamethrin and permethrin) and cholinesterase inhibitors (chlorpyrifos-
oxon and pyridostigmine bromide) and have identified that none of these compounds are
capable of directly affecting dopamine transporter (DAT) function in cells stably
expressing the human DAT. However, prolonged exposure to the pyrethroid resulted in
decreased dopamine uptake. We demonstrated that this effect was not the result of overt
toxicity, but coincided with the appearance of DNA fragmentation, indicative of an
ongoing apoptotic process. These experiments are now in manuscript form and will be
submitted to Toxicology and Applied Pharmacology by the end of the calendar year (see
appendix). In the last report, we provided dose-response data on the effects of JP-8 jet
fuel on cytotoxicity in SK-N-MC neuroblastoma cells. We are currently in the process of
performing the apoptosis and dopamine uptake assays proposed in Specific Aim 1. While
SK-N-MC cells have been the standard cell line we have used in our laboratory, they are
primarily cholinergic. We have recently obtained a dopaminergic cell line (N27) isolated
from fetal rat mesencephalic neurons and transformed with SV40. We feel that these cells
will be ideal for looking at relative susceptibility of dopaminergic cells to the compounds
proposed in our Statement of Work. We will continue to perform assays with the SK-N-
MC cells as well.
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times over a two week period to
C57BL/6j mice results in a significant
increase in DAT-mediated dopamine
uptake in striatal synaptosomes prepared
from these mice (Figure 1A). This up-
regulation of DAT function was
accompanied by an increase in the
number of DAT binding sites as
measured by *H-WIN 35,428 binding to
DAT in synaptosomes prepared from
these mice. This is a particularly
important  finding  since  military
personnel are most likely to be exposed
to low-levels of these compounds over a
period of time rather than a single large
dose. The dose of deltamethrin
administered in these studies (3 mg/kg)
is 3-fold lower than the 9 mg/kg used in
the single exposure studies reported last
year. Likewise, the dose of permethrin
(0.8 mg/kg) is 11-fold lower than the 9
mg/kg used in the single exposure
studies. Mechanistically, the studies
performed in Specific Aim 1 suggest
that the effects observed with the in vivo
exposures are not the result of a direct
effect on DAT itself.

We have extended these studies further
with deltamethrin and determined a
dose-response  relationship  between
deltamethrin exposure and up-regulation
of DAT. As can be seen in Figure 2
(Top), 1 mg/kg administered every three
days over 2 weeks appears to be the
lowest dosage capable of increases DAT
levels. We also determined that the up-
regulation of DAT was accompanied by
increased locomotor activity in the open-
field (Figure 2 Bottom). Indeed, we
found a significant correlation between
the levels of DAT, as determined by
WIN binding, and increased locomotor

.
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Figure 2. Deltamethrin exposure results in a
dose-related increase in DAT levels and
locomotor activity. C57BL/6j mice were treated
with various dosages of DM 3 times over a 2
week period. Locomotor and DAT
determinations were made 1 day following the
last injection.
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Figure 3. Increases in locomotor activity

Following deltamethrin exposure correlate

Well with the increases in DAT levels.

activity (Figure 3). Therefore, it appears that the functional up-regulation of DAT by
deltamethrin exposure has functional consequences on the behavior of the animal that is
manifested as hyperactivity. We have also performed preliminary experiments with
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In addition to the hyperactivity noted in these | § 0.
mice, we have determined that mice exposed to

deltamethrin  display increased = response to
cocaine-induced locomotion (Figure 4). While not
part of the original application, these data provide
further mechanistic insight into the consequences
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Figure 4. Increased levels of DAT in
deltamethrin treated mice resultin

suggest that up-regulation of DAT by pyrethroid | ., hanced locomotor response o
exposure may exacerbate responses to therapeutic | cocaine.

drugs which work through DAT, such as the anti-

depressant and smoking-cessation aid bupropion
(Wellbutrin).

In Aim 2, we proposed to determine whether pyrethroid or
cholinesterase inhibiting pesticides increased anxiety.
Figure 6 demonstrates that mice exposed to 3 mg/kg of
deltamethrin every three days for two weeks have
decreased anxiety as evidenced by increased time spent in
the center of the open-field. Generally, mice fear open
space and the center of the open field. The top part of the
graph is a track-trace of mouse movement in an open-field
for 90 minutes following a 30 minute acclimatization
period. As can be seen in the graph, control mice spent the
majority of their time in the peripheral part of the open-
field box away from the center. However, deltamethrin
treated mice were hyperactive and spent more time
crossing the open-field and in the center (Figure 5).
Whether these results are mainly because of the
hyperactivity induced by deltamethrin or truly indicate
decreased anxiety remains to be established. Therefore, we
will assess anxiety related behaviors in the elevated plus
maze to determine the role of hyperactivity in this behavior.
These studies are ongoing.

Concurrently with our studies on DAT in mice treated with
pyrethroids, we have isolated RNA from these mice for use
with real-time PCR profiling of genes involved in
dopaminergic and cholinergic function. We currently have
real-time probes developed for DAT, VMAT2, tyrosine
hydroxylase, D1-D5 dopamine receptors, DARPP-32,
choline acetyltransferase, high affinity choline transporter,

S
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Figure 5. Deltamethrin
treated mice display
increased anxiety as
determined by increased
time spent in the center of
the open field. Top.
Control mouse. Bottom.
Mouse administered 3
mg/kg deltamethrin.
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Figure 6. The effects of deltamethrin

As outlined in last year’s progress report, | appear to be preferential for the dopamine
we found no differences in locomotor | System,as there were no effects on
activity in animals treated with MPTP or the zzorucal levels of the serotonin transporter
) S .. . paroxetine binding) or norepinephrine
combination of MPTP and the pesticides in | transporter (nisoxetine binding).

this proposal. This is consistent with the
findings of our lab that many of these routine tests are not at all sensitive to motor
_impairment in rodent models of neurodegeneration. To provide a more sensitive measure
of toxin-induced behavioral deficits, we have recently installed a sophisticated gait-
analysis system from Mouse
Specifics, Inc. The mouse walks
on a transparent conveyor belt and
the paw placement is captured
digitally from below with a video
camera. Patterns of gait dynamics
for each limb of the walking rodent
are analyzed for stride length,
stance width, stance time, braking
time, and propulsion time — indices

40+
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2 9

that may demonstrate the effects of o Saline MPTP

genes and/or drugs on C(')ordmate.d Figure 7. Striatal dopamine levels are decreased by
movement. We have validated this | 50% in mice administered 2 x 10 mg/kg MPTP twice
test using a moderate dosage (2x10 | over a 12 hr period. This is a very moderate dose
mg/kg) of MPTP. This dosage and lesion compared to most MPTP studies which
produces approximately a 50% routinely deplete over 90% of striatal dopamine.




loss in striatal dopamine following treatment (Figure 7). At this level, no currently
available behavioral tests can readily detect behavioral deficits. Using the new Cleversys
software for the gait analysis apparatus, we systematically analyzed over 15 individual
measurements related to the gait of the mouse. We found that a moderate MPTP lesion
produced significant increases in forepaw brake time, while decreasing hindpaw brake
time (Figure 8). We also found alterations in forepaw and hindpaw stride length (Figure
9). These data suggest that the automated gait analysis system is a sensitive and detailed
method for detecting behavioral deficits in mice with moderate dopaminergic lesions. We
are currently in the process of applying these tests to the pyrethroid treated animals.

Forepaw Brake Time

*

S Saline HEMPTP

Hindpaw Brake Time
90+

80

@ 704
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Figure 8. Automated gait analysis reveals
increased forepaw and decreasedhindpaw
brake time in mice administered a
moderate dose of MPTP.
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Figure 9. Automated gait analysis reveals
decreased forepaw and hindpaw stride
length in mice administered a moderate
dose of MPTP. '
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Appendix
Copy of manuscript to be submitted to Toxicology and Applied Pharmacology before the

end of the calendar year

Copy of poster presented at the Society of Toxicology Annual Meeting

Copy of poster presented at the Society of Neuroscience Annual Meeting

Copy of abstract submitted for presentation at Society of Toxicology Annual Meeting

Key Research Accomplishments for Year 3

Repeated exposure to deltamethrin increases dopamine uptake and expression of the
dopamine transporter in C57BL/6j mice

Repeated exposure to permethrin increases dopamine uptake and expression of the
dopamine transporter in C57BL/6j mice

Repeated exposure to deltamethrin does not affect serotonin or norepinephrine transporter
levels in C57Bl/6j mice

Repeated exposure to deltamethrin causes hyperactivity which is correlated to increased
dopamine transporter expression in C57BL/6j mice

Repeated exposure to deltamethrin increases cocaine-induced locomotor activity
Repeated exposure to deltamethrin increases anxiety as assessed by increased center time
in the open field

Development of methodology for sensitive-automated gait analysis test to detect
behavioral impairment in moderately-lesioned MPTP mice

Reportable outcomes:

Poster presented at SOT meeting
Guillot, T.S., Richardson, J.R., and Miller, G.W. (2004). Deltamethrin Increases
Dopamine Transporter Expression and Enhances Cocaine-induced Locomotion.
Toxicologist 78:1357.

Poster presented at Society of Neuroscience Meeting
Guillot, T.S., Richardson, J.R., and Miller, G.W. (2004). Pesticide Exposure
Upregulates the Dopamine Transporter and Increases Cocaine-induced.
Locomotor Activity while Abolishing Place Preference. Society for Neuroscience
Abstracts 804.14.

Abstract submitted for presentation at SOT Meeting
Guillot, T.S., Richardson, J.R., and Miller, G.W. (2005). Sensitive Detection of
Behavioral Impairments in Moderately Lesioned MPTP Mice by Automated Gait
Analysis. Submitted for SOT Annual Meeting.

Manuscript to be submitted for publication in Toxicology and Applied Pharmacology
Elwan, M. A, Richardson, J.R., Guillot, T.S., Caudle, W.M., and Miller, G.W.
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Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal
dopaminergic pathway. Several epidemiological studies have demonstrated an association
between pesticide exposure and the incidence of PD. Studies from our laboratory and others have
demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an
integral component of dopaminergic neurotransmission and a gateway for dopaminergic
neurotoxins. Here, we report that repeated exposure (3 injectibns over 2 weeks) of mice to two
commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg),
increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably
expressing DAT, we determined thdt exposure (10 min) to deltamethrin and permethrin (1 nM-
100 uM) had no effect on DAT-mediated dopamine uptake. Extending exposures to both
pesticides for 30 min (10 pM) or 24 hr (1, 5, and 10 pM) resulted in significant decrease in
dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT
protein, or cytotoxicity. However, there was an increase in cytoplasmic oligonucleosomes, an
index of apoptosis, in cells exhibiting reduced uptake at 24 hr. These data suggest that up-
regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term
exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of
dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may
increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into

the association between pesticide exposure and PD.

Key words: Deltamethrin; Permethrin, Pyrethroid, Dopamine transporter; Parkinson’s Disease




Parkinson’s disease (PD) is a disabling neurodegenerative disorder characterized by the
loss of nigrostriatal dopamine neurons and the formation of intraneuronal inclusions termed
Lewy bodies (Olanow and Tatton, 1999). Although the exact etiology of PD is unknown, both
genetic and environmental factors are thought to contribute to the pathogenesis of PD. While
there are rare instances of genetically-linked PD, data from a recent large twin study, found no
significant contribution of genetics to late-onset PD (Tanner et al., 1999). This finding suggests
that environmental factors or gene-environment interactions play an integral role in the
development of sporadic PD.

Several epidemiological studies have identified pesticide exposure as a significant risk
factor for Parkinson's disease (Gorell et al., 1998; Le Couteur et al., 1999; Priyadarshi et al.,
2000; Tanner and Langston, 1990). Other studies have demonstrated that drinking well-water
and living in a rural setting, both of which may increase exposure to agricultural pesticides,
increase the risk of developing PD (Barbeau et al., 1987; Betemps and Buncher, 1993; Golbe et
al., 1990; Rajput et al., 1986; Rajput et al., 1987; Semchuk et al., 1991). In addition, exposure to
pesticides used in the home has been linked to PD (Stephenson, 2000). Hdcher, the majority of
studies have not identified specific pesticides or the mechanism by which pesticides damage the
dopaminergic system and increase the risk of PD. |

Studies by our laboratory and others have demonstrated that exposure of mice to the
organochlorine insecticide heptachlor increases the expression of the plasma membrane
dopamine transporter (DAT; Miller et al., 1999a; Kirby et al., 2001) at dosage levels that elicit |
no overt toxicity. DAT is an integral component of normal dopamine function and is responsible
for terminating dopamine neurotransmission by rapid reuptake of dopamine into the presynaptic
terminal (Giros and Caron, 1993; Miller et al., 1999b; Shimada et al., 1991). Several studies have
demonstrated that alterations in the expression of DAT can greatly affect the vulnerability of the
dopamine neuron to neurotoxins such as MPTP. Gainetdinov and colleagues demonstrated the
requirement of DAT for the toxicity of MPTP (Gainetdinov et al., 1997), while Donovan and
coworkers (1999) have shown that overexpression of DAT in transgenic mice results in greater
loss of dopamine neurons following MPTP exposure. Therefore, exposure to pesticides that
increase DAT may increase the susceptibility of dopamine neurons to endogenous neurotoxic

dopamine metabolites or exogenous neurotoxicants by increasing their uptake by DAT.




In addition to heptachlor, exposure of mice to the pyrethroid pesticides deltamethrin and
permethrin has been demonstrated to increase DAT-mediated dopamine uptake (Gillette and
Bloomquist, 2002; Karen et al., 2001; Kirby et al., 1999). Pesticides in the pyrethroid class are
widely used in household and agricultural applications and are popular because of their low
mammalian toxicity. Although pyrethroids are usually considered environmentally labile, they
readily cross the blood brain barrier and can achieve considerable concentrations in the brain
(Anadon et al., 1996). Acute toxicity of pyrethroids is primarily mediated through interaction
with sodium channels, leading to prolonged depolarizétion and hyperexcitation of the nervous
system (Narahashi, 1982; Tabarean and Narahashi, 2001). Pyrethroids have also been shown to
be potent releasers of neurotransmitters, including dopamine (Eels, and Dubocovich, 1988; Kirby
et al., 1999). However, the mechanism by which pyrethroids are capable of increasing DAT-
mediated dopamine uptake is not clear.

Here, we report that in vivo exposure to deltamethrin and permethrin not only causes
functional 'up-regulation of dopamine uptake, but increased levels of DAT as well. In addition,
acute exposure of SK-N-MC neuroblastoma cells to these pyrethroids has no effect on dopamine
uptake, indicating that deltamethrin and permethrin do not directly interact with DAT. Finally,
we found that longer-term exposure to deltamethrin and permethrin reduce dopamine uptake in
these cells, and that this effect is most likely the result of an ongoing apoptotic process. Taken
together, our results suggest that the effects of pyrethroids on DAT are indirect and that longer-

term exposures may be capable of damaging cells through an apbptotic mechanism.

MATERIALS AND METHODS

Materials.  Analytical grade (purity > 98%) deltamethrin and permethrin were obtained from
ChemService Inc. (West Chester, PA). [°H]-dopamine (58 Ci/mmol) and [°H]-WIN 35,428 (85
Ci/mmol) were purchased from Perkin-Elmer Lifg Sciences (Boston, MA). The rat monoclonal
antibody to DAT was purchased from Chemicon (Temecula, CA) and the secondary antibody
coupled to horseradish peroxidase was purchased from ICN (Costa Mesa, CA). Super Signal
West substrate and stripping buffer were obtained from Pierce (Rockford, IL). All other reagents
were obtained from Sigma Chemical Co. (Sigma, St. Louis, MO) or Fisher Scientific (Pittsburgh,
PA).




Animals and Treatments.  Male C57BL/6j mice (8 weeks of age) were obtained from Jackson
Laboratories (Bar Harbor, ME). Animals were group housed (6 per cage) under a 12:12 light-
dark cycle and acclimatized for 1 week prior to initiation of experiments. Standard rodent chow
and tap water was available ad libitum. All procedures were conducted in accordance with the
Guide for Care and Use of Laboratory Animals (National Institutes of Health) and previously
approved by the Institutional Animal Care and Use Committee at Emory University.

A total of 24 mice were used for these experiments. Control mice were injected
intraperitoneally with vehicle (methoxytriglycol; n = 12) and treated mice were injected with
deltamethrin (3 mg/kg; n = 6) or permethrin (0.8 mg/kg; n = 6) three times over a 2-week period
(Days 1, 8, 15) as described previously (Kirby et al,, 1999; Miller et al., 1999b). One day
following the last treatment, animals were sacrificed and the striatal tissue dissected out freshly

prepared for assay as described below.

Synaptosomal Dopamine Uptake and *"H-WIN 35,428 Binding. Dopamine uptake studies
were performed as described previously (Miller et al., 1999b). Briefly, crude synaﬁtosomes were‘
prepared from fresh striatal tissue and incubated in assay buffer (4 mM Tris, 6.25 HEPES, 120
mM NaCl, 5 mM KCl, 1.2 mM CaCl,, 1.2 mM MgSOy, 0.6 mM ascorbic acid, 5.5 mM glucose,
10 pM pargyline; pH 7.4) containing a saturating concentration of dopamine (1 pM final
concentration) and a tracer amount of [*H]}-dopamine (20 nM). A single saturating concentration
of dopamine was chosen to assess effects of pyrethroids on the V. of DAT, since previous
studies using the same dosing paradigm have demonstrated no significant effect on K, (Kirby et
al., 1999; Karen et al., 2001). Uptake was allowed to proceed for 3 min at 37°C, and then
terminated by the addition of ice-cold buffer and rapid vacuum filtration over GF/B filter paper
using a Brandel harvester. Filters were washed twice more with buffer, allowed to air dry, and
placed in scintillation vials containing 8 mls of Econoscint (Fisher Scientific, Pittsburgh, PA) for
scinitillation counting. Uptakc rates were calculated as specific uptake (total uptake — non-
specific uptake), with non-specific uptake defined by the inclusion of 10 pM nomifensine. -
Following determination of synaptosomal protein concentration (Bradford, 1976), uptake rates
were calculated as pmol/min-mg protein and expressed as percentage of control values.
Determination of *H-WIN 35,428 binding to DAT was performed essentially as described
by Coffey and Reith (1994) with modifications to reduce the total volume to 200 pl, for assay in




96-well microtiter plates. Preliminary kinetic studies indicated that the binding of *H-WIN
35,428 to striatal synaptosomes was best fit to a one-site model determined by non-linear curve
fitting techniques (GraphPad Prism 3.0) with a K4 of 6.58 nM and a By of 1.08 pmol/mg
protein. Therefore, binding studies with crude synaptosomes were conducted with a single
concentration (10nM) of *H-WIN 35,428 in 25 mM sodium phosphate buffer (125 mM NaCl, 5
mM KCI; pH 7.4) for one hour at 4°C in 96-well plates. Incubations were terminated by rapid
vacuum filtration onto GF/B filter plates and radioactivity was determined by liquid scintillation
counting. Non-specific binding was determined by the inclusion of 10pM nomifensine and
specific binding was calculated as the total binding (incubated without 10 pM nomifensine)
minus non-specific binding (incubated with nomifensine). Data were calculated as pmol/mg

protein and expressed as percentage of control values.

Cell Culture. SK-N-MC (human neuroblastoma) cells stably expressing human DAT (SK-
DAT; Stephans et al., 2002) were maintained in minimum essential medium (MEM)
supplemented with Earle’s salts, 10% heat-inactivated fetal bovine serum, 50 U/ml penicillin, 50
pg/ml streptomycin, 2 mM L-glutamine, 1 mM sodium pyruvate and non-essential amino acids,

and incubated under a humidified atmosphere of 5% CO» in air at 37°C. For pyrethroid

exposure, deltamethrin and permethrin were dissolved in dimethylsulfoxide (DMSO) at a
concentration of 10 mM. Further dilutions of both pyrethroids were made in uptake buffer for
experiments with dopamine uptake and in serum-free media for experiments with cytotoxicity
and apoptosis. The final concentration of DMSO was <0.1% for all experiments. Control
experiments were performed in the presence of DMSO in a concentration similar to that used in

the pyrethroid-treated cells.

Dopamine Uptake and Western Blot Studies in Cells. Dopamine uptake by SK-DAT cells
was performed as described elsewhere (Pifl et al., 1993). Briefly, cells were plated in 24-well
plates and incubated for 48 hrs in the above MEM medium. Cells were washed once with the
- uptake buffer (4 mM Tris, 6.25 HEPES, 120 mM NaCl, 5§ mM KCl, 1.2 mM CaCl,, 1.2 mM
MgSO0,, 0.6 mM ascorbic acid, 5.5 mM glucose; pH 7.4). For acute studies (10 and 30 min),
cells were incubated with various concentrations of either deltamethrin or permethrin (100 nm-

10 pM). For longer term studies (24 hr), cells were exposed to the pyrethroids in serum-free



media for 24 hr and then washed once in uptake buffer. Following the wash step, cells were
incubated for 5 min at 37°C with uptake buffer containing unlabeled DA (2.5 pM) and a tracer
amounts of [°H]-dopamine. Pargyline (10 pM) was included during all the uptake periods to
inhibit monoamine oxidase and non-specific uptake was defined in the presence of 10 pM GBR-
12935. After the incubation period, the buffer was quickly aspirated off and cells were washed
twice with ice-cold buffer. Cells were then dissolved in 0.5 ml of 0.1 M NaOH and the
solubilized cellular contents were transferred to liquid scintillation vials containing 8 ml of liquid
scintillation cocktail. The radioactivity was measured by scintillation counting and an aliquot of
the solubilized cells was used for protein determination using bovine serum albumin as standard
(Lowry ef al., 1951). Uptake rates were calculated as specific uptake (total uptake — non-specific
uptake) and expressed as percentage of control values.

To determine the effects of pyrethroids on the Ky, and Vpax of dopamine uptake in SK-
DAT cells, cells were incubated with pyrethroids for 10 min or 24 hr and dopamine uptake was
determined as described above using increasing concentrations (0.5-40 pM) of dopamine. Ky,
and Vmax were determined by non-linear regression using GraphPad Prism 3.0 (GraphPad
Software, San Diego, CA).

Western blots were performed as previously described (Miller et al., 1997). Briefly, cells
were scraped from culture plates and sonicated at 4°C in a buffer containing 300 mM sucrose, 10
mM HEPES and 1 pg/ml of leupeptin, aprotinin, and pepstatin. Samples (20 png) were subjected
to SDS PAGE on 10% precast NuPage gels (InVitrogen, Carlsbad, CA).- Samples were
electrophoretically transferred to a polyvinylidene difluoride membrane, and nonspecific sites
were blocked in 7.5% nonfat dry milk in Tris-buffered saline (135 mM NaCl, 2.5 mM KCl, 50
mM Tris, and 0.1% Tween 20, pH 7.4). Membranes were then incubated in a monoclonal
antibody (Chemicon, Temecula, CA) to the N-terminus of DAT (Miller et al., 1997). Antibody
binding was detected using a goat anti-rabbit horseradish peroxidase secondary antibody (ICN,
" Costa Mesa, CA) and enhanced chemiluminescence. The chemiluminescent signal was captured
on an Alpha Innotech Fluorchem imaging system and stored as a digital image. Densitometric
analysis was performed and calibrated to co-blotted dilutional standards of pooled cells from all
control samples. Membranes were then stripped for 15 min at 25°C with Pierce Stripping Buffer
and reprobed with a monoclonal a-tubulin antibody to ensure equal protein loading across -

samples.



Cytotoxicity and DNA Fragmentation Assays. The possible cytotoxic effects of pyrethroid
exposure on SK-DAT cells was evaluated by measuring lactate dehydrogenase (LDH) leakage
into the extracellular fluid using a cytotoxicity detection kit (Roche Applied Science,
Indianapolis, IN). Briefly, cells (1x10* cells/well) were incubated with different concentrations
of pyrethroids for 24 hr in serum-free MEM and the incubation medium was collected and
centrifuged. The cell-free supernatant (100 pl) was then mixed with 100 pl of the catalyst-dye
mix (included in kit) in a 96-well microtiter plate. LDH activity in the media was determined
spectrophotometrically at 490 nm by monitoring the increase in absorbance over a 30 min
period. To determine the total amount of LDH in each sample, the original cells and media were
lysed in 1% Triton X-100 for 30 min and LDH activity was determined as described above. The
LDH release for each sample was defined as the LDH activity in the incubation media divided by
the total amount of LDH activity following Triton-lysis and data expressed presented as
percentage LDH leakage.

The possible apoptotic effect of pyrethroid exposure on SK-DAT cells was evaluated by
DNA fragmentation assay using the Cell Death Detection ELISA Plus Assay kit (Roche Applied
Science, Indianapolis, IN). This kit measures amount of histone-associated low molecular weight
DNA, which is indicative of histone-associated DNA fragments which have been cleaved by
endonuclease, in the cytoplasm of cells and has been used as a measure of apoptosis in cells
exposed to other toxicants (Anantharam et al., 2002; Kitazawa et al. 2002). Briefly, cells were
seeded in microplate wells (1x10* cells/well) and treated for 24 hr in serum-free MEM with
either deltamethrin or permethrin. After treatment, cells were pelleted and washed once with
phosphate-buffered saline. Cells were then incubated with lysis buffer (supplied with the kit) at
room temperature for 30 min and centrifuged. Aliquots of supernatant (20 pl) were dispensed
into a streptavidin-coated 96-well microtiter plate (supplied with the kit) and incubated with 80
ul of antibody cocktail for 2 hr at room temperature with shaking. The antibody cocktail
consisted of a mixture of anti-histone biotin and anti-DNA-HRP, which binds to both single-
stranded DNA and double-stranded DNA, which are major constituents of nucleosomes. After
incubation, plates were washed with incubation buffer and determination of the amount of
nucleosomes retained by anti-DNA-HRP was determined spectrophotometrically with 2,2'-azino-

di[3-ethoxybenzyl thiazoline sulfonate] as an HRP substrate (supplied with the Kkit).



Measurements were made at 405 nm using a Spectramax Plus microplate reader (Molecular
Devices). Non-specific signal was determined by subtraction of a reagent blank and data were

expressed as mU (defined as absorbance x 10”®) cytoplasmic oligonucleosomes.

Statistical analysis. Results were expressed as the mean + S.E.M. In instances where data were
presented as percentage of control, all statistical procedures were performed on the raw numbers.
Data were analyzed by Student’s f-test or one way analysis of variance (ANOVA). If a
significant F was determined by ANOVA, post-hoc analysis was performed with Dunnett’s test.

Statistical significance is reported at the p < 0.05 level.

RESULTS

No overt signs of toxicity, defined as tremor, choreoathetosis, and salivation, were
observed following administration of either deltamethrin or permethrin. There were also no
significant changes in weight in any of the treated animals (data not shown).

Administration of deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg) three times over
two weeks resulted in a significant increase in striatal dopamine uptake (Fig. 1A). Deltamethrin
exposure increased DAT-mediated dopamine uptake in striatal synaptosomes by 31% (p < 0.01)
one day following the last treatment. At this same time, permethrin exposure increased dopamine
uptake by 28% (p < 0.01). The increases in dopamine uptake observed were accompanied by
increases in DAT-binding sites as determined by *H-WIN 35,428 binding in striatal
synaptosomes (Fig. 1B). Deltamethrin resulted in a 32% increase (p < 0.01), while permethrin
exposure increased DAT-binding sites by 24% (p < 0.01). -

Since we observed significant up-regulation of DAT following in vivo exposure to
deltamethrin and permethrin, we sought to determine whether these effects were the result of
direct action of the pyrethroids on DAT. To accomplish this, we exposed SK-N-MC
neuroblastoma cells stably expressing DAT (SK-DAT) to various concentrations of pyrethroids
for 10 min, 30 min, or 24 hr. Exposure of SK-DAT cells for 10 min with either deltamethrin or
permethrin (1 pM to 10 uM) had no significant effect on DAT-mediated dopamine uptake (Fig.
2A). Extending the incubation time to 30 min resulted in a significant decrease in dopamine
uptake by both deltamethrin (20%; p < 0.01) and permethrin (18%; p < 0.01) only at a
concentration of 10 uM (Fig. 2B). Further extending the incubation time to 24 hr resulted in a



greater decrease of dopamine uptake, as both deltamethrin (p < 0.01) and permethrin (p < 0.01)
decreased dopamine uptake by about 75% at concentrations of 5 and 10 pM (Fig. 2C). To
determine the nature of the inhibition of DAT-mediated uptake by deltamethrin and permethrin,
we performed kinetic analysis of dopamine uptake in SK-DAT cells exposed to 10 pM of either
compound for 24 hr. Both pyrethroids showed significant alterations in Vi, with little effect on
K, suggesting that the decreased uptake may be the result of non-competetive inhibition (Fig.
3A and B). Similar results were observed following 30 min incubations (data not shown).

Based upon the time and concentrations required for deltamethrin and permethrin to
cause decreased dopamine uptake, we considered that the decreased uptake may be the result of
loss of DAT protein. Exposure of cells to 10 pM of deltamethrin or permethrin was without
effect on the total levels of DAT as determined by western immunoblotting (Fig. 3C). We next
examined whether exposure to deltamethrin or permethrin resulted in cytotoxicity by assessing
LDH leakage from the cells into the incubation medium. Treatment of SK-DAT cells with 1 to
10 puM of deltamethrin or permethrin for 24 hr did not produce any significant change in LDH
leakage, effectively ruling out overt cytotoxicity as a mechanism for the decreased dopamine
uptake. However, exposure of SK-DAT cells to 5 or 10 pM of permethrin or 10 uM deltamethrin
for 24 hr significantly increased DNA-fragmentation, an indication of an active apoptotic process
(Fig. 4B). Exposure to 5 pM permethrin increased the amount of fragmentation by 191% (p <
0.05) and exposure to 10 pM increased fragmentation by 422% (p < 0.01). Deltamethrin
increased fragmentation by 223% (p < 0.05) only at 10 pM. Similarly, increased DNA-
fragmentation was observed following 30 min of exposure to 10 pM of deltamethrin (35%; p <
0.05) or permethrin (65%; p < 0.05). No significant effects were observed with lower

concentrations (data not shown).

DISCUSSION
Previous studies have demonstrated that repeated exposure of mice to the pyrethroid
pesticides, deltamethrin and permethrin, results in increased synaptosomal dopamine uptake
(Gillette and Bloomquist, 2003; Karen et al., 2001; Kirby et al., 1999) In this study, we confirm
these observations and extend them by demonstrating that the functional up-regulation is
accompanied by increases in DAT-binding sites. In addition, we demonstrate that permethrin and

deltamethrin have no direct effect on DAT and that longer-term in vitro exposure of cells stably
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expressing DAT results in decreased DAT-mediated dopamine uptake and induction of
apoptoéis.

Deltamethrin and permethrin are members of the pyrethroid class of pesticides which are
synthetic derivatives of the naturally occurring pyrethrum from chrysanthemum flowers. These
compounds exert their toxicity primarily through binding to sodium channels and prolonging the
opening of the channel (Narahashi, 1996). However, recent data suggest that these compounds
may specifically target the dopaminergic system. It has been demonstrated that exposure of mice
to deltamethrin or permethrin results in an increase in dopamine uptake in striatal synaptosomes,
possibly indicative of an up-regulation of DAT (Karen et al., 2001; Kirby et al., 1999). In
addition, up-regulation of dopamine uptake following deltamethrin exposure was accompanied
by increased binding of GBR 12935 (Gillette and Bloomquist, 2003). In this study, we found
significant increases in DAT binding sites as measured with WIN 35,428 that mirrored the
increase in DAT-mediated dopamine uptake. While no specific mechanism has been identified
for the increase of DAT by these compounds, chemicals known to cause dopamine release, like
amantidine, can increase DAT expression (Gordon et al., 1996). If this were to be sustained over
time, one would expect that the elevated extracellular dopamine would increase the expression of
the dopamine transporter in an attempt to clear and recycle dopamine. Another possibility is up-
regulation of DAT at the transcriptional level. The transcription factor Nurrl is critical for the
development of the dopaminergic phenotoype (Zetterstrom et al., 1997) and has been shown to
directly enhance transcription of DAT (Sacchetti et al., 2001; Hermanson et al.>, 2003). Since
Nurrl transcription is enhanced by neuronal activity and membrane depolarization (Perrone-
Cappano et al., 2000), dopamine release and/or blockade of sodium channels by deltamethrin
may cause upregulation of Nurrl, ultimately leading to increased expression of DAT.

In contrast to the in vivo data, our results show that incubation of SK-DAT cells with
DM or PM resulted in significant decrease in DA uptake and alteration in the DA uptake
kinetics. It is apparent that this decrease in DA uptake is dependent on both the concentration of
pyrethroids and the time of incubation. The lack of a significant effect on dopamine uptake after
10 min incubation suggest that both compounds are devoid of any direct effect (increase or
decreasé) on dopamine uptake. It also rules out a cocaine-like effect on dopamine uptake.
However, deltamethrin and permethrin concentrations as low as 1 nM produced slight, but not

statistically significant, increase in dopamine uptake by SK-DAT cells (data not shown). This is
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consistent with reports that deltamethrin attenuated basal- and quinpirole-potentiated dopamine
uptake in rat striatal synaptosomes (Thompson et al., 2000), and that permethrin reduces the
level of DAT immunoreactive proteins in rat striatum (Pittman et al., 2003). Our findings in the
cell culture experiments are not in agreement with the data showing that pyrethroids increase
both striatal DAT protein and maximal DA uptake (Bloomquist et al., 2002; Gillette and
Bloomquist, 2003; Karen et al., 2001). It is worth noting, that in these studies the increases in
DAT protein and function were observed using small doses of pyrethroids. However, exposure to
higher doées of pyrethroids resulted in decreases in DAT level and dopamine uptake possibly
due to cell stress and decreased mitochondrial function (Bloomquist et al., 2002; Gillette and
Bloomquist, 2003; Karen et al., 2001). Despite the difficulty in comparing pyrethroid
concentrations in our experiments with those achieved with in vivo studies, it seems that the
concentrations we used are in the high range.

Since a direct (cocaine-like) action on DAT is excluded by the results of 10 min
experiments, other mechanism(s) of may be involved in the reduction of dopamine uptake
observed here. One such possibility is that by interference with the nerve membrane sodium
channels, pyrethroids lead to prolonged depolarization (Narahashi, 1982; Tabarean and
Narahashi, 2001). Indeed, veratridine, a sodium channel activator, at concentrations of 10 pM
and 50 pM resulted in tetrodotoxin-sensitive inhibition of DA uptake into rat striatal
synaptosomes (Holz and Coyle, 1974). Another potential mechanism we considered was that the
results we observed were because of pyrethroid-induced cytotoxicity. Results of the current
study iﬁdicate that this is not a likely possibility, however, since at the highest concentration
attainable (10 pM), neither deltamethrin nor permethrin produced any significant cytotoxic effect
as revealed by LDH assay. This is in agreement with finding that exposure to pyrethroids for 24
h did not produce any significant effect on LDH release from mouse cerebellar granule cells
(Imamura et al., 2000), and also indicates that decreased DA uptake observed in our study ’is not
due to cytotoxicity.

In order to specify the deleterious effects of pyrethroids on SK-DAT cells survival, we
tested the possibility of apoptotic cell death. Our findings reveal that pyrethroids induce
apoptosis following 24 hr incubation with deltamethrin or permethrin (10 pM), whereas at lower
concentrations, only permethrin induced apoptosis. These data suggest that apoptosis may

explain, in part, some of the observed decrease in dopamine uptake. There is growing body of
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evidence indicating that apoptosis might play a crucial role in the toxic actions of pyrethroids by
induction of apopiosis and altering the expression of p53, Bax, and Bcl-2 genes (El-Gohary et
al., 1999; Wu et al., 2003; Wu and Liu, 2000b; Wu and Liu, 2000a). Also, deltamethrin elicits
prolonged expression of c-Fos and c-Jun in the rat cerebral cortex, suggesting that deltamethrin
can initiate the neurodegeneration process (Wu and Liu, 2003). Moreover, pyrethroids decrease
the viability and arrest mitosis in cultures of V79 Chinese hamster lung cells (Hadnagy et al., .
1999), human lymphocytes (Carbonell et al., 1989), and liver cells (el-Tawil and Abdel-Rahman,
1997).

In conclusion, the present study clearly demonstrates that deltamethrin and permethrin
increase DAT and DAT-mediated dopamine uptake in striatal synaptosomes following in vivo
exposure. However, exposure to these compounds in vitro decrease dopamine uptake in SK-DAT
cells. Our results also suggest that induction of apoptosis may partly explain some of these
findings. These results may shed light the mechanisms underlying pyrethroids-induced
neurotoxicity and might implicate pyrethroids as environmental risk factors leading to the

development of PD.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Repeated administration of deltamethrin (DM; 3 mg/kg) or permethrin (PM; 0.8
mg/kg) to C57 mice increases (A) dopamine uptake in striatal synaptosomes and
(B) DAT levels in striatal synaptosomes as determined by 3H-WIN 35,428
binding. Data are presented as percentage of control values and represent mean +
SEM (n = 5-6 animals per treatment for pyrethroids and 12 animals for control). *
indicates groups are significantly different from control values (p < 0.01) using

the untransformed data as determined by ANOVA followed by Dunnett’s test.

Effects of deltamethrin (DM) and permethrin (PM) on dopamine uptake in SK-N-
MC neuroblastoma cells stably expressing the human DAT. Cells were incubated
with various concentrations of DM or PM for 10 min (A), 30 min (B), or 24 hr
(C) and dopamine uptake was determined as described in Materials and Methods.
Data are presented as percentage of control values and represent mean + S.E.M.
(n = 3). * indicates groups are significantly different from control values (p <
0.01) using the untransformed data as determined by ANOVA followed by

Dunnett’s test.

Effects of (A) deltamethrin (DM; 10 uM) or (B) permethrin (PM; 10 uM)
treatment for 24 hr on the kinetics of dopamine uptake in SK-N-MC
neuroblastoma cells stably expressing the human DAT. Cells were incubated with
DM or PM for 24 hr and the kinetics of dopamine uptake were determined by
using varying concentrations of dopamine as described in Materials and Methods.
Data represent mean + S.E.M. (n = 3) and absence of error bars indicates that the
standard error resdes within the size of the symbol. (C) Total DAT levels in cells
treated with DM or PM for 24 hr as determined by western immunoblotting. Data

represent mean *+ S.E.M. (n = 3).

Effects of deltamethrin or permethrin on (A) LDH leakage and (B) DNA
fragmentation. SK-N-MC cells stably expressing the human DAT were treated
with media (C), vehicle (DMSO), deltamethrin (DM; 1-10 pM), or permethrin
(PM; 1-10 pM) for 24 hr. After exposure, cell-free media samples were collected
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and assayed for LDH levels by spectrophotometry. DNA-fragmentation in cells
following 24 hr of exposure was determined as described in Materials and
Methods. Data for LDH are presented as percentage of LDH leakage and
represent mean + S.EM. (n = 3). * indicates groups are significantly different
from control values (p < 0.05) using the untransformed data as determined by

ANOVA followed by Dunnett’s test.
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Figure 2. Elwan et al., 2004
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